Centroidal Mean Derivative - Based Closed Newton Cotes Quadrature
نویسنده
چکیده
In this paper, a new scheme of the evaluation of numerical integration by using Centroidal mean derivative based closed Newton cotes quadrature rule (CMDCNC) is presented in which the centroidal mean is used for the computation of function derivative. The accuracy of these numerical formulas are higher than the existing closed Newton cotes quadrature (CNC) fromula. The error terms are also obtained by using the concept of precision. Comparisions are made between the existing closed Newton cotes formula and the centroidal mean derivative based closed Newton cotes quadrature formula by using the numerical examples. Keyword: Closed Newton-Cotes formula, Error terms, Centroidal mean derivative, Numerical examples, Numerical integration.
منابع مشابه
Root Mean Square Derivative - Based Closed Newton Cotes Quadrature
In this paper, a set of Root mean square derivative based closed Newton Cotes quadrature formula (RMSDCNC) is introduced in which the derivative value is included in addition to the existing closed Newton Cotes quadrature (CNC) formula for the calculation of a definite integral in the inetrval [a, b]. These derivative value is measured by using the root mean square value. The proposed formula y...
متن کاملComparison of Arithmetic Mean, Geometric Mean and Harmonic Mean Derivative-Based Closed Newton Cotes Quadrature
In this paper, the computation of numerical integration using arithmetic mean (AMDCNC), geometric mean (GMDCNC) and harmonic mean (HMDCNC) derivativebased closed Newton cotes quadrature rules are compared with the existing closed Newton cotes quadrature rule (CNC). The comparison shows that, arithmetic mean-based rule gives better solution than the other two rules. This set of quadrature rules ...
متن کاملA New High Order Closed Newton-Cotes Trigonometrically-fitted Formulae for the Numerical Solution of the Schrodinger Equation
In this paper, we investigate the connection between closed Newton-Cotes formulae, trigonometrically-fitted methods, symplectic integrators and efficient integration of the Schr¨odinger equation. The study of multistep symplectic integrators is very poor although in the last decades several one step symplectic integrators have been produced based on symplectic geometry (see the relevant lit...
متن کاملError inequalities for an optimal 3-point quadrature formula of closed type
In recent years a number of authors have considered an error analysis for quadrature rules of Newton-Cotes type. In particular, the mid-point, trapezoid and Simpson rules have been investigated more recently ([2], [4], [5], [6], [11]) with the view of obtaining bounds on the quadrature rule in terms of a variety of norms involving, at most, the first derivative. In the mentioned papers explicit...
متن کاملA corrected quadrature formula and applications
A straightforward 3-point quadrature formula of closed type is derived that improves on Simpson’s rule. Just using the additional information of the integrand’s derivative at the two endpoints we show the error is sixth order in grid spacing. Various error bounds for the quadrature formula are obtained to quantify more precisely the errors. Applications in numerical integration are given. With ...
متن کامل